Class 11 Thermodynamics Short notes
Thermodynamics
# It gives physicality or spontaneity of
chemical reaction.
#
Reversible process :-
1) negligible difference between two opposing force
2) Quassi States
3) gradual change
4) always remain almost in
equilibrium state.
#
Irreversible process :-
1) large difference between
two opposing force
2) No Quassi states
3) sudden change
The
universe = the system + the surroundings
Work done :-
Wirr = - Pext x ΔV
Wrev = - 2.303 nRt log Vf / vi
Wrev > Wirr ( expansion
)
Wrev < Wirr ( compression )
Law of thermodynamics :-
1st law : Energy
Conservation
2nd law :
Sponteinity
3rd Law : For a
perfectly crystalline substance , entropy is zero at K
4th or Zereth Law : Heat transfer occures from higher
to lower temperature.
Internal Energy - ( E or u )
All possible energies operating in the system
# Gravitational E is not considered
in Int. E
# Absolute value of Int.E cannot be
calculated , Thus changes in E is Calculated .
ΔE = q + w
ΔE = q - Pext . ΔV
(irev)
ΔE = q - 2.303 nRt log Vf/Vi (
rev)
Isothermal : ( ΔT=0)
ΔE=0 (Internal energy is thhe function of
temprature)
q= -wà w done by the system
where q is amount of q given
Isobaric: (ΔP=0)
ΔE= q-pext. ΔV
Isochoric:( ΔV=0)
ΔE=qv àheat
transferred at constant volume is called ΔE.
ΔEf-ΔEi=qvà q amt given to the system
Tf>Ti à T increase
Adiabatic : ( q = 0 )
Δ E = W
E2 – E1 = W à W amt of
word is done
E2 > E1
T2 > T1
# Under Vacuum / Free Expansion à
W.D is zero
ΔH = qp
à Heat Transfer at Const Pressure
SPONTINETY : 1) Enthalpy
(H)
2) Entropy (S)
3) Gibbs
Free (G)
Enthalpy (H) –
ΔH = ΔE + Δ(p.v)
à ΔH = ΔE + (p2v2 – p1v1)
ΔH = ΔE + PΔV
+ΔP.V
At constant
p , (Δp=0)
ΔH=ΔE+PΔV
Gaseous State , constant T&P , V is changing ,
n will be changing
ΔH = ΔE+Δn(g) Rt
# Heat Capacity : ( C )
Amt of Heat required à Temp by 1* C
Q = CT
# Special Heat Capacity : ( Cs )
Amt of heat required à Temp of 1g substance by 1*C
Cs = C/mass
Q = mass × Cs × ΔT
# Molar Heat Capacity : ( CM )
Amt of heat required à Temp of 1 Mole substance by 1*C
C m C/mole q = CΔT
q = mole * CH * ΔT
At constant P ,
ΔH = qp = nCpΔT
At constant v ,
ΔH = nCvΔT = qv
# Gibb’s
Free Energy (G) –
ΔG = ΔH – Δ(Ts)
ΔG = ΔH – TΔS -ΔTs
At constant Temp, (ΔT=0)
ΔG = ΔH – TΔS
If ΔG = -ve à spontaneous
If ΔG = +ve à Non-spontaneous
If ΔG = 0 à Equilibrium
ΔG
= ΔG⸰ +RT ln
At Equilibrium à ΔG = 0 & Q = K à Equi. Constant
ΔG⸰ = -RT lnK
·
ΔG⸰ ΔH⸰ - TΔS⸰
Δ G⸰ = -RT lnK
ΔH⸰ - TΔS⸰ = -RT lnK
ΔH⸰/RT - ΔS⸰/R = lnK
Ln
K = ΔH⸰/R * 1/T +ΔS⸰/R
Y = m x + c
ΔG = ΔP.N – ΔT.S
At constant T à ΔG = Δ.P.V
At Constant p à Δ G = -ΔT.S
S = -ΔG/T
ΔG
= ΔH – TΔS
ΔG
= ΔH +TΔ( SG/ST)P
#
Thermo-Chemistry :
1) STANDARD ENTHAPLY OF FORMATION : ΔH⸰f or ΔfH⸰
Amt of
Energy released à 1 mole of substance formed from element in their
standard state ( Most stable state )
·
Standard
state : C Graphite , P4 (White) , S8 (orthorhombic) , H+ (aq) , O2
(g)
I2
(8) , Br2 (l) , Cl2 (g).
è
ΔH⸰f for species in std. State is ‘Zero’
2) STANDARD ENTHALPY OF COMBUSTION: ΔH⸰C or ΔCH⸰
è Amt of E
released à 1 mole subs.
3) STANDARD ENTHALPY OF ATOMISATION : ΔH⸰ atomization
E Changes
occurs when à All covalent bond broken from 1 mole of covalent
comp.
4) STANDARD BOND ENTHALPY : ΔH⸰ Bond
E change à 1 mole of covalent bond is broken
ΔHatom = n Δ H⸰bond
5) STANDARD ENTHALPY OF NEUTRALISATION : Δ H⸰N
E change à 1 equivalent of H+ is completely neutralized
by 1 1 equi of OH-
·
Δ
Hn = 57.1 / mole or 13.6 K
cal/mole
·
NaoH
+ HF à Naf + H2O ; Δ H⸰ > 57.1k ; High Hydration E of F- ion
6) STANDRAD LATTIC ENTHALPY : Δ H⸰ Lattic
·
E Change à 1 mole of ionic bond broken into constituent ions
in Gaseous State
7) STANDARD ENTHALPY OF SOLUTION : Δ H⸰ Solution
·
Δ H⸰ solution = Δ H⸰ Hydration +
Δ H⸰ Lattic
8) STANDARD ENTHALPY OF FUSION : Δ H⸰ Fusion
·
E Change à 1 mole solid converted into 1 mole liquid at const.
T&P
9) STANDARD ENTHALPY OF SUBLIMATION : Δ H⸰ sublimation
·
E. change à 1 mole solid converted into 1 mole gas at constant T&P
10) STANDARD
ENTHALPY OF VAPOURIZATION : Δ H⸰ vaporization
·
E. change à 1 mole liquid converted into 1 mole gas at const.
T&P
11) STANDARD ENTHALPY OF REACTION : Δ H⸰r
·
E. change à in any reaction
Δ H⸰r = ∑ Δ HR
LAWS
1) Laplace lavoiser law :
à Exothermic , vice versa
Endothermic
2)
Hess’ law of
Summation :
i)
Δ H1 ΔH3 = ΔH1 + ΔH2
ii)
Δ H2
iii)
Δ H3
3 ) Kirrchoff’s Equation :
·
Δ H2 - Δ H1
= Δcp ( ΔT2 – ΔT1)
4) Clausius – Cleperyon Equation :
·
Log p2/p1
= ΔH/2.303R ( 1/T1 - 1/T2 )
5) Troton’s Rule :
Δ H⸰ Vapourisation/TB = 88J/K mole
è Not application to liquids which shows strong intermolecular
forces such as H – bonds
6) Calorific Value :
Δ H⸰ Combustion
/ Mol.wt
# Bomb Calorimeter –
q a ΔT
q = c ΔT
ΔE = qv = C ΔT ( const. v)
# W.D in
Rev. Adiabatic Process –
Wrev = n.r/r-1
# States
Function :
è Depends only on State of the system & not the
path required to achieve particular state
·
Eg : P ,Vol
, Temp , ΔH , ΔE , etc
# Path Function
:
è Depends on path
·
W.D , q , etc
# Intensive
Properties :
Do not depend on mass
# Extensive
Properties :
Depend on mass